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A GYROSTAT WITH AN ELASTIC 
ANlr THEIR STABILITY* 

M.K. NABIULLIN 

Using Rumyentsev methods /l-3/ in the Kur'min form /4/, stationary 
motions are deduced for a gyrostat with a circular annular plate clamped 
by the inner contour in a housing, and sufficient conditions are obtained 
for their stability. The paper touches on a cycle of papers devoted to 
investigating the stability of systems with distributed parameters: 
elastic rods, flexible rectangular plates, and a flexible string /S-19/. 

1. We introduFe the following coordinate system: CWa% is the orbital system with 
origin at the centre of mass of the mechanical system for the plate state of strain, the 

CZ, axis is along the orbit radius, the CZ, axis is perpendicular to the orbit plane, and 
the axis Cz, is orthogonal to the Cri, C+, axes: OZ~O is the coordinate system coupled 
rigidly to the gyrostat housing whose axes axe directed along the principal central axes 
constructed for the centre of mass 0 of the system for the undeformed stata of the plate: 
%#*a is the coordinate system whose 0% axes (I== i,2,3) are parallel to the I,#, t axes, 
respectively. 

We will define the gyrostat location in the orbital coordinate system by the Euler angles 
$6, cp and the direction of the zf axes (r=.=1,2,t, with respect to the axes of the system 

0ulWr by the direction cosines ellr cdl, cat. that depend in a known manner on the angles 
'P, e, cp, for instance, a,=rinqtein8lZO1. 

we will define the location of points of the plate in the deformed State with respect to 
the gyrostat housing by a radius-vector whose projections on the axes are 

r, = (a + r) co9 I - +h, rv = (0 + r) sin & - zu, (1.i) 
r, 9 I + w (q = qcos b - (a + ?)-I wh sin h, 4 = ctt,sia 5 f ((I f r)-l oh cash) 

Here a is the radius of the inner circular contour of the middle plane located in the 
02~ plane, o+r,b,z are cylindrical coordinates of an arbitrary point of the plate in the 
undeformed state, w(T,&,z) is the projection of the elastic displacement vector of an arbitrary 
point of the middle plane on the s-axis, and the letter subscripts on the quantity w denote 
first-order partial derivatives with respect to the variable indicated in the subscript. 

*Prikl.Matem.Mekhan.,Vo1.48,5,864-867,1984 
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The differential equations of motion and the boundary conditions of a gyrostat with an 
annular elastic plate in the restricted problem in a circular orbit allow of a Jacobiintegral 
/21/ when the gyrostatic moments kS (8 = 1, 2, 3) are COnStant. 

8 

H=T, -&a 
c 

Aij (3cr,~,i - %aaj) - U.2) 

i. j=l 

where T, is the kinetic energy in relative motion, R is the potential energy of the plate, 
0 is Poisson's ratio, o0 is the orbital angular velocity, and D/2 is the plate cylindrical 
stiffness; the double letter subscript for the quantity w in the expression for the plate 
potential energy denotes the second partial derivative with respect to the coordinates 
indicated in the subscript, and Aij (1, i- 1, 2, 3) are tensor components of the system inertia 
constructed for the centre of mass of the system C. 

2, The equations and boundary conditions obtained by equating the first variation of 
the integral (1.2) to zero allow of solutions corresponding to the equilibrium locations in 
the orbital coordinate system (the vector projections relative to the angular velocity o, 
on the vS axes (d= i, 2, 3) are zero). 

Three families of relative equilibrium locations exist when the circular annular plate 
is not deformed (w= I+= u &= 0) and its middle plane is either orthogonal to the orbit radius 

(%I = 0, 00 - n/2, cp - %I) or tangent to the trajectory of the centre of mass (@,,=f&= n/2,9= w). 
or coincides with the orbit plane. The principal central moments of inertia of the sytem 
A,(#= 1,2, 3) relative to the Z,P,Z axes for the undeformed state of the plate and the 
gyrostatic moments k,(r= t, 2,3), and the angle o0 should satisfy the following relationships 
for the first family of motions: 

(A, - A,) o&in p,cos 'pO + (ug (4 cos ‘p. - k, sin cp,) = 0, k, = 0 

For the second family of motions the coefficient Al-AA, is replaced by 4(A,- A,). 

3. To investigate the stability of the stationary motions obtained by usingRumyantsev's 
theorem /2/, we take the Liapunov functional in the form v= E-H,, where H, is the value 
of the integral (1.2) evaluated along the unperturbed motions, and we consider the sign- 
definiteness condition of its second variation bViK. which equals the sum of the second 
variations of the kinetic energy MT, in relative motion and the potential energy PII, of the 
system, 

Establishment of the sign-definiteness of the Liapunov functional is given a foundation 
below by the idea of introducing the integral characteristics of the motion of continuous 
media proposed by Rumyantsev when investigating the motion-stability of complex systems 
relative to part of the variables /l/. 

It can be shown that the second variation of the kinetic energy iYT, is positive-definite 
and continuous in the metric 

UJ3 = 4' (0 + $1 + y COS L + o*sin h, p1 = 2hp 

Here 2h is the plate thickness, pis its density, and 4 is the coordinate of the 
centre of mass C of a system in the OIYZ coordinate system, We retain the previous notation 
for the deviations of the variables from their unperturbed values and find the minimum p of 
the functional 
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in the class of functions D, that have continuous partial derivatives in the domain r1 = (r. 
k:Oqr<a,o(h<Pn) in the variables r,1 to the fourth order inclusive, and satisfy the 
boundary conditions 

r = 0, t> t,, w = IL+ = 0 (3.2) 

Equating the first variation of the functional (3.1) to zero, we obtain the following 
boundary value problem: 

V'wf a*V'w- pw = 0 (a* = l/,Ph') (3.3) 

r= b, t>, to. “7, + uw,n,r +- usno = 0 (3.4) 
1 

wm + (2 --a) Q,"o'- (a F-3) "%"aa i ~ph*"? + 

"W"* - W&~ = 0 (n, = (a + Y) 

It can be shown that the expression 

l3.5) 

is the solution of (3.3), where J,. Y,,,,I,, K,,, are Bessel functions (of the first and, second 
kinds, and modified, respectively) with orders m-0, 1, 2,... 

Substitution of the Solution (3.5) into the boundary conditions (3.2) and (3.4) results 
in a system of algebraic equations in the arbitrary constants ci(r=i,2,3,4) with coefficients 
dependent on the Bessel functions. Equating the determinant of this system to zero, we obtain 
a transcendental frequency equation to find the desired minimum p of the functional (3.1). 
The frequency equation is not presented because of its awkwardness. 

From (3.1) we find an estimate of the form 

ZI = Xl - p#*> 0 (7 = IrDlP1) (3.6) 

We now introduce new variables and functional-integral characteristics by the formulas 

(3.7) 

The dependence 

II'+ 22' = ((I + r)w'1, ~a'frr' = (a + r) ("r' + Q".l) (3.5) 

evidently holds between the initial variables ", ",,"), and the new variables q (i= 1,2,3,4). 
We apply the Cauchy inequality to the functionals li (i = i, 2, 3, 4): we then obtain 

z;=C &ri'drl--,*a0 S (i = i, 2) (3.9) z' 
zj'=B S&tj)dr,-Q>O (i = 3.4) 

r, 

Here C is the moment of inertia of the plate relative to the z-axis, and B is its mass. 
By using the relationships (3.6)-(3.9) , an expression can be written for the second 

variation of the potential energy tm, in these variables, The conditions for its sign- 
definiteness result in the inequalities 

When these inequalities are satisfied, the functional WI, is positive-definite and 
continuous in the metrics 
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According to Rumyantsev's theorem /2/, inequality (3.10) is the sufficient condition 
for stability of the first family of equilibrium positions in the metrics P,+P, and Pt+ P,. 
When inequalities (3.10) are satisfied, the Liapunov functional also satisfies the conditions 

of the theorem /22/. 
It follows from the inequalities obtained that the sufficient conditions for stability 

depend substantially on the lowest natural vibration frequency for the circular annular plate 
and its parameters; a diminution in the plate cylindrical stiffness can result indestabilization 
of the family of equilibrium positions. 

The inequalities (3.10) generalize the sufficient conditions for stability of a satellite- 
gyrostat without deformable elements and reduce to the criteria in /23/ as x-00. 

The author is grateful to V.M. Ratrosov for his interest and for useful discussions- 
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ON AN INTEGRAL EQUATION Of CONTACT PROBLEMS OF ELASTICiTY 
THEORY IN THE PRESENCE OF ABRASIVE WEAR* 

E.V. KovALENKo 

An algorithm based on the method of matched asymptotic expansions and 
enabling one to avoid mathematical incorrectness is proposed for solving 
the integral equations of contact problems taking abrasive wear of the 
surfaces of contiguous bodies into account. An exact solution is written 
for the convolution type integral equation of the second kind with a 
logarithmic kernel in a semi-infinite interval in the class of continuous 
functions that vanish at infinity. 

A mathematical inaccuracy is committed in solving the integraleguationsofcontactproblems 
of elasticity theory in the presence of abrasive wear (/l-4/, etc.). The quantity characterir- 
ing the contact pressure distribution law and have a singularity of the square-root type for 
t=o at the ends of the contact domain /5/ was expanded in a Fourier series in the efgen- 
functions of a certain self-adjofnt ccmpletely continuous integral operator acting in a space 
of square-susnaable functions. However, as follows from the general theory of Fourier series 
in Hilbert spaces /6/, such a series will be known to be divergent in the norm of the space 

.L (-i,i). 
The approach proposed below enables one to avoid this mathematical incorrectness and in 

conjunction with the method in /7,8/ enable a solution of the contact problems mentioned to 
be constructed in the whole range of time variation. The closed solution of the convolution 
type integral equation of the second kind with logarithmic kernel in a semi-infinite interval 
can also be used to investigate contact problems for rough elastic bodies (or to study contact 
problems in the presence of thin elastic coatings) /9/ when the coefficient of the main term 
of the integral equation tends to zero. 

1. The initial equations of the contact problem of elasticity theory for a linearly 
deformable base of general type in the presence of abrasive nwear can be written in the form 

/4/ 

(1.2) 

The piecewise-smooth function y(t)>O(Ogt< T) and the kernel k(z) of the integral 
equation (1.1) is representable in the form 

k(o)= 1 L(u)cos(uz)du. I = +- (1.3) 
0 

L (u)> 0. (I u I < cc), L(u) = A + 0 W) (u -0, A = comt) 

L(u)= u-1 +O(tr') fs - oo)l 

The analysis presented below refers to the case of an even function f(t). The general 

case is considered analogously. 
On the basis of (1.3), the following lemma is proved /5/: 

Lemna. For all values of O<lzl<m the following representation holds for k (2) 
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